
JOIJPNAL OF COMPUTATKNAL PHYSICS 75, 103-122 (1988)

Efficient Parallel Simulations
of Dynamic king Spin Syste

BORIS D. LUBACHEVXY

AT & T Bell Laboratories,
Murruy Hill, NCR Jersey 07974

Received February 20, 1987; revised May 6, 1987

An ev,ent-driven method for parallel simulation of a class dynamic Monte Carlo models is
presented. The method can be applied to several models studied in rhe compu?ational physics
such as Ising spin simulations by the method of Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller. continuous time Ising spin simulation by Glauber, and the dynamic binary alloy
simulation. Unlike previously known parallel multi-spin algorithms, the proposed algorithms
do not change the simulated model. For example, the asynchrony and randomness of update
time arrivals which are present in Glauber’s formulation, are not disturbed here and the
simulated update history is precisely the same as it is in the serial algorithm. The theoretical
efficiency evaluation is encouraging: for 768 x 768 spins using a parallel processor with 250
processing elements, the estimated effreiency is not lower than 71%. This means a parailel
speed-up of 180 in the computations which were previously believed inherently serial.
The algorithm by Bcrtz. Kales, and Lebowitz can be incorporated, fsrther contributing to
speed-up. ?’ 19% Academic P:ess. Inc.

1. INTRODUCTION

In the basic model of Ising spin simulations [g], a configuration is defined by the
spin variables s(r) = +1 specified at the vertices r of a two or three dimensional
lattice. In the standard Monte Carlo model, invented by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller [121, the evolution of the configuration is a sequence
of one spin updates: Given a configuration. define the next configuration by choos-
ing a vertex Y uniformly at random and changing the spin s(v) to -S(V) with
probability p which is determined by the old values of s(v) and neighbors .s(v’).
With probability 1 - p, the siv) remains unchanged.

The standard model represents a certain discrete time Markov chain. Originally,
this chain was designed as an integrating Monte Carlo device, where the measure
was defined by the chain equilibrium distribution. The transient evolution of the
configuration was considered an artifact. Later, Glauber [6] introduced a con-
tinuous time probabilistic dynamic for an Isin g system. Although in both models,
the equiiibrium distribution is the same, and both could serve as integrating Monte
Carlo devices, Glauber’s dynamic model was also intended to represent the time
evolution of a physical system.

The dynamic Ising model can be described as follows: A rate L is chosen.
103

104 BORIS D. LUBACHEVSKY

Independent, rate 1, Poisson processes of attempted spin change arrivals are
associated with vertices of the lattice. If an attempted change arrives at a vertex v,
the spin s(v) is changed to -S(V) with probability p. With probability 1 - pY the
spin s(v) remains unchanged. The probability p is determined in the same manner
as in the standard algorithm, using the values of S(V) and neighbors s(v’) just before
the update time.

The similarity between the two models is not accidental. It is known that a given
discrete time Markov chain can be “embedded” into a continuous time Markov
chain which has the same equilibrium distribution and, up to a proportionality,
the same off-diagonal transition matrix (“uniformization” procedure, see, e.g.,
Keilson [9], Ross [14]). Both chains produce the same random sequences of
conligurations but over different time scales: in the discrete chain, time intervals
between attempted updates are equal, in the continuous chain, they are random
and exponentially distributed. The dynamic model is, in fact, the continuous time
Markov chain which corresponds to the discrete Markov chain of the standard
model. In this sense, both standard and dynamic models can be considered as the
same model, and the evolution of the configuration is the standard model can be
thought of as representing the time evolution of a physical system.

For a large system, many updates of each spin are required to obtain useful
results, e.g., to reach the equilibrium of the chain. The simulation on a general
purpose serial computer took so long that special purpose hardware was built
for speeding up the processing (Ogielski [131). Bortz, Kalos, and Lebowitz [3],
developed a serial algorithm (the BKL algorithm) which avoids processing unsuc-
cessful spin change attempts. They report up to a lo-fold speed-up over the
straightforward implementation of the standard model.

The BKL algorithm does not change the original standard model, but only the
method of simulating changes. Attempts have been made to speed up the Ising
simulation by parallel computations (Friedberg and Cameron [5], Creutz [4]). In
these computations the model is changed as well as the algorithm. For example, a
discrete time Markov chain corresponds to the multi-spin model [S] with the same
equilibrium distribution as in both Glauber’s and standard model. However, the
transition matrix and the random sequences of configurations of the chain are
substantially different from those of the standard algorithm.

Glauber’s dynamic model is commonly considered to be the most natural
description of the time evolution of a physical system which is subject to unpredic-
table random local changes (see Binder [2] and references therein). The model is
usually believed to be inherently serial: an algorithm can process only one update
at a time.

Contrary to this belief, the present paper describes an efficient method for
parallel simulation of the class of continuous time, dynamic models, in particular,
for Glauber’s Ising model and for the dynamic binary alloy model. The method
promises unlimited speed-up when the lattice and the parallel computer are
sufficiently large. The BKL algorithm can be incorporated, further contributing to
speed-up.

DYNAMIC ISING SPIN SYSTEMS 105

An important property of the proposed parallel method of simulation is that it
does not change the simulated model. To make this point clearer, the proposed
method should be compared with the following well-known time-dritlen simulation:
An increment L3f is chosen. The lattice is observed at time instances 0, dt, 2dt,
The attempted changes which fall within slot [k dt, (k- + 1 j dt) may be processed
concurrently. This processing must be completed before processing the next slot
[(k + I) 3r. (k + 2) drj begins. The contradiction between precision and efficiency is
inherent to the time-driven method. Namely, when dt is larger, more events can be
processed at an iteration, but more errors are also caused by the dt-quantization of
update times.

By contrast. the algorithms proposed in the given paper are event-driven (see
[I 11 for a more general discussion). Precise representation of update times is not
sacrificed in favor of parallelization; the simulated update history is exactly the
same as it is in the serial algorithm. For example, if Glauber’s dynamic model
is simulated. the asynchrony and randomness of update time arrivals are not
disturbed.

This paper is organized as follows: Section 2 gives a general statement of the
problem and includes two saturated’ algorithms, one synchronous and one
asynchronous. (Both algorithms are applicable to the same asynchronous dynamic
Ising model.) Section 3 presents two examples of Tsing simulations borrowed from
131: single spin flips and spin exchanges. Ways to supersaturate processing and to
incorporate the BKL algorithm are described in Section 4. Section 5 discusses a
method to collect statistics while performing the dynamic simulation in parallel.
The computational experiments reported in Section 0 suggest (expectedly) that
efficiency decreases when the degree of the lattice increases and increases when the
degree of supersaturation increases. The efficiency obtained for the saturated Ising
spin Rip model in two dimensions is not lower than 12% for up to 96” processing
elements. For the supersaturated algorithm in which one PE carries a 48 x 48 sub-
lattice, the efficiency is not lower than 71% for up to 16’ PEs. (Use of 256 PEs with
efficiency 71 Sb implies speedup of 180.)

2. SATURATED ALGORITHMS

Time t is continuous. The simulated system is a finite graph or hypergraph’ C.
Each vertex v has a state s = s(r). At random times, a vertex is granted a chance to
change the state. The changes, if they occur, are instantaneous events. Random

’ In a saturated algorithm the number of spins matches the number of available processing elemenrs,
so that one PE carries one spin. In a supersaturated algorithm the number of spins is larger than the
number of avaiable processing elements, so that one PE can carry several spins. Thts terminology is due
to C. Kruskal [lo].

’ A hypergraph G (see Berge [11) is a pair (., b, r 31, E), where {v) is a set of vertices and E= {ei7 ezr ..,)
is a family of subsets of {v} called edges. If leil = 2 for all i, then G is just a graph. For a given vertex 11,
neighbors[v)= {(JIEPe).

106 BORIS D. LUBACHEVSKY

attempts to change the state of a vertex are independent of similar attempts for
other vertices.

The specific law of attempted change arrivals and the considerations for
computing the next state are not important for the algorithms described in
this section. The algorithms will be formulated in terms of these procedures:
tinle-qf-nex-attempt () and nextstate (). They are defined as follows: given time
t old of an arrival to vertex v, the time t of the next arrival can be computed in the
form

t = tin?e-of_nextLattempt (1’. told), (2.1)

where always t > told ; and given the old state of the vertex and the states of the
neighbors just before time t, s,~~,, (neighbors(v)), the next state s(v) = s,(v) can be
computed in the form

s,(v) = nextstate(s,-,(neighbors(v)), t), W?

where the possibility s,(v) = s, _ J v j is not excluded.
In (2.2), s (neighbors(v)) denotes the indexed set of states of all the neighbors of v

including v itself. For example, if neighbors(v) = (v,, v2, r3, v4, v,;, then
s (neighbors(v)) = (s(v,), s(vz), s(vj), s(v4), s(vj)). Subscript t - 0 expresses the idea
of “just before t”; formally it means the left-side limit at t, as in the case a,_O(z) =
lim r-I.x<I a(z). According to (2.2), the value of s(v j instantaneously changes at time
t from s I-0(~j) to S,(V). At time t, the value of s(v) is already new. Without this “just
before” feature the rule for choosing a new state may become ambiguous if two
neighbors attempt to change their states at the same simulated time:

t(v) = t(d) for v’ E neighbors(v), 1” # v. (2.3)

The possibility of representing random and unpredictable changes in Glauber’s
dynamic model in the form of deterministic equations (2.1) and (2.2) should not be
surprising. It is, in fact, a standard way of simulating a continuous time Markov
chain on a computer. In particular, a Poisson arrival is usually simulated in a deter-
ministic, predictable and reproducible manner. Namely, the time t of the arrival is
obtained, given the time told of the previous arrival as follows.

t = told -; log r(n(told)),

where /, is the rate, r(n) is the nth pseudo-random number in the sequence
uniformly distributed on (0, 11, and n(t) is the invocation counter.

The parallel computer which simulates this system consists of a number of
processing elements running concurrently; one PE is assigned to simulate exactly
one vertex of G. The PEs are interconnected by the network which matches the
topology of G. A PE can receive information from its neighbors. The PE assigned
for vertex v maintains state s(v j and local simulated time t(v). The latter has no

DYNAMIC ISING SPIN SYSlEMS ?i?7

/* Initially. new-s = s (~1, new-f = t(v) */

8.
9.

else i
synchronize; /* barrier 1 *I
synchronize I* barrier 2 *i

FIG. 2.1. Synchronous algorithm.

connection with the physical time in which the parallel computer runs the program
except that t(llj may not decrease when the physical time increases. At a given
physical instance of simulation. different 1~ may have different values of t(v). Two
versions of the parallel algorithm are presented: synchronous and asynchronous.
Figure 2.1 presents the code executed by the PE whrch simulates vertex I* in the
synchronous algorithm.

Variables I(11) and s(v) are assumed to be visible (accessible for reading only) by
the neighbors of \I. Variables rzen’s and neu’-r are invisible to all the PEs except the
owner; these variables are private. Statements “synchronize” are synchro~~zat~o~
barriers. When a PE hits a “synchronize” statement it must wait until all the other
PEs hit a “synchronize” statement; then it may resume.’

At a given iteration. all PEs are split into two groups: the PEs which failed the
test in line 1 synchronize at lines 8 and 9, those which passed the test synchronize at
line 3 and then 7. The former two idle synchronizations are required to match the
latter two synchronizations. The algorithm implies no synchronizati.on except for
that explicit in lines 4, 7, 8, and 9. Statements between the synchronization barriers
are not necessarily executed in lock-step.

’ Efficient standard methods to implement such synchronization exist. For example, the following
method is decrihed in [111: A PE which hits a “synchronize” barrier issues an I-am-rrady signal. Wher.
all P-ant-ready signals are collected, go signals are issued, one signal for each PE. After a PE receives a
go signal, it resumes execution. If the number of PEs is large, a tree network, like the one in Fig. 5.2: is
employed to collect the incoming I-am-ready signals and the propagate the outcoming go signals. Time
3flog h’) is reqvired for both operations, where N is the number of PEs. The scheme taries depending
on the architecture of the host computer. Barrier synchronization comes for free on a synrhrcno~
lockstep computer. e.g., on a vector processor.

108 BORIS D. LUBACHEVSKY

An example is helpful: Let G be a circle with four vertices v = 0, 1, 2, and 3, and
four edges (0, 1), (1, 2), (2, 3), and (3, 0). Set neighbors(v) consists of three vertices:
(v - 1) mod 4, v itself, and (v + 1) mod 4. Assume initially t(v) = 0, v = 0, 1, 2, 3.
Take Eq. (2.1) in the form 1’ = f + 1 + (v + t) mod 3. Here time increment
At = 1 + (v + t) mod 3 plays the role of a “random” interval between the arrivals.
The state values and the state equation (2.2) are irrelevant in the present discussion.
Table 2.1 represents evolution of the local times t(v) during the first three cycles of
the algorithm in Fig. 2.1.

At the end of cycle 1, vertex v = 0 is at time t(0) = 1. The time of its right
neighbor is t(1) = 2 and the time of its left neighbor is t(3) = 1. Both neighbors’
times are not smaller than t(0). According to the algorithm, at cycle 2, vertex v = 0
can update its state using the current values of its neighbors’ states.

Observe that the right neighbor is currently ahead in simulated time, it has
already progressed up to time t(1) = 2. Nevertheless, it is correct to use the future
state of the right neighbor since the state has been constant over the time interval
[0,2) which covers the update time t(O)= 1.

The current state of the left neighbor is in the “present” (that is t(3) = t(0) at the
end of cycle 1) and the neighbor itself is going to update its state at cycle 2. The
two-step assignment in Fig. 2.1 via the intermediate private variables (step one, in
lines 2 and 3, and step two, in lines 5 and 6), and both synchronization barriers
assure correct execution of this simultaneous update of both states, s(O) and s(3).

The algorithm in Fig. 2.1 performs this simultaneous update as follows: First,
vertices v = 0 and v’ = 3 read states s, --. of each other and compute their private

TABLE I

Three Iterations of the Synchronous Algorithm

Y 0 1 2 3

Initial values I(V) 0 0 0 0

Cycle 1 f(Y) < min dv’)
Y’E neighborsp,

dl=l+(v+f)mod3

t(v)

True True True True

1 2 3 1

1 2 3 1

Cycle 2 True False False True

2 2

3 7 3 3

Cycle 3 ti\l) 4 min t(Ld)
1,’ t ne,ghbon, P)

;Ir=l+(v+t)mod3

41fJ

False True False True

- 1 1

3 3 3 4

DYNAMIC ISING SPIN SYSTEMS 103

cycle (

I. wait-until t(v) Q min
v’ E neis$hors Iv)

lb3 ;

2. s b) - next-state is(neighborsCvv)), I Cv)) ;

3. t (v) - time-of-next-attempt b, t (,)I

FIG. 2.2. Asynchronous algorithm.

rzeu4s; then, after synchronization barriers, Y and v’ update their states, thus
making sure that no write interferes with a read.

In this example, update times t(v) are integers, which makes (2.3 j probable On
the other hand, in the dynamic Ising simulation the update times t(v) are indepen-
dent Poisson arrivals, and the possibility (2.3) can be ignored. The corresponding
protective mechanisms in the algorithm can be abandoned as well. The resulting
asynchronous algorithm is presented in Fig. 2.2.

By definition,
wait-until predicate

is semantically equivalent to

label: if not predicate then goto label

(The definition says nothing about how often or fast the predicate is tested. j Thus,
the effect of the repeated “if’ testing (line 1, Fig. 2.1) in the absence of syn-
chronization is the same as the effect of the “waittuntil” statement (line I, Fig. 2.2)

The asynchronous algorithm generates correct simulation for the following
reason: If vertex 1’ passed the “waituntil” in line 1. its neighbors will not be able to
pass the line before v has completed an update of t(v) in line 3. Consequently, there
will be no interference with updating S(V) and t(v). The assumption that (2.3) is
impossible is crucial in the above inferences.

Both algorithms are free from deadlock since at least one vertex v, the one whose
i(v) is minimal over the entire graph, is able to make progress. This guaranteed
worst case performance is substantially exceeded in the examples presented in
Section 3.

A mire general system can be simulated, in which upon an arrival of an
attempted change to vertex v, the states s(v’) of all the vertices v’ E neighbors(v)
may change as well as the state of s(v) Formally this means replacement of
Eq. (2.2) with

s[(neighbors(v)) = nextstate(s,-,&neighbors(v)), t). (2.2’)

The “just before” feature of the subscript t -0 in (2.2’) no longer saves it from
ambiguity, if two distinct neighbors v and v’ decide to change their neighborhoods
neighbors(v) and neighbors(v’) at the same simulated time. Then it might not be
certain which new states should be assigned to the vertices in set

neighbors(v) n neighbors(v’). (2.4)

110 BORIS D. EUBACHEVSKY

For this reason, the more general model must prohibit coincidence of update times
in pairs of different vertices 1’ and V’ such that set (2.4) is not empty. This
prohibition is not a burden in the case of independent Poisson arrivals.

Changes in the algorithms caused by replacement (2.2) and (2.2’) are obvious. In
particular, line 2 in the algorithm in Fig. 2.2 should now read

s(neighbors(v)) t tzexrsrate(s(neighbors(v)), t(v));

3. Two EXAMPLES

Single spin flip king model. G is a two- or three-dimensional finite orthogonal
lattice with periodic boundary conditions. A vertex of the lattice hosts a spin.
Figure 3.1 presents a 4 x 4 lattice. It can also be viewed as an appropriate intercon-
nection topology for the parallel computer hosting the simulation, where the circles
represent the PEs. The state S(V) is a spin, S(V) = S,, = +l; state change means the
spin flip. The realization of Eq. (2.1) is as follows: each vertex generates its own
pseudo-random number P, uniformly distributed on (0, 11, and each increases its
local time t by -(l/A) log r, where 1 is the chosen fixed rate of attempted changes.

The realization of Eq. (2.2) is based on the Hamiltonian

E= -J 1 S,.S,.. - HE S,,, (3.1)
Y, \,’ Y

where J and Hare constant, 1’ and v’ are neighboring vertices. Given temperature T
and Boltzmann’s constant k, the probability of configuration change is
p = P(- A E/kT), where

AE = E(new configuration) - E(old configuration) (3.2)

and where function P is usually computed as

P = x/(1 + x); x = exp(-A E/kT) (3.3)

FIG. 3.1. A 4 x 4 lattice.

DYNAMIC ISIDiG SPIN SYSTEMS ‘ill

or as

P=
i

1,
expi - AE/lkT),

if BEdO,
otherwise.

(3.3’j

Exphcit expressions for AE are different in different dimensions In two dimen-
sions, the change of the energy due to the flip of spin S, is

where subscript indices i - 1, i + 1, j- 1, .j + 1 are understood module the size of the
lattice.

ange model. G is a hypergraph, &al to the graph f the lattice in the
xampie: a vertex in G is an edge in the original graph, an an edge in G is a

vertex in the original graph (see [1] j. One of 32 vertices of the hypergraph, dual to
the graph in Fig. 3.1 is (Sz2. Szj). It has 6 neighbors, (SIz, Sz2j, (S,,, SI,),
(Szj, S24j. is,;, S,,), iSz2, S,,), and (S,,, Sz2j, which are cotmected with (S72t S2 j ;
along two edges, S,? and Sz3. Figure 3.1 again can be viewed as an i~terco~~e~~~o~
for the computer hosting the simulation, but now PEs are located on the connec-
tion lines between the circles, whereas the circles themselves represent the connec-
tion buses. In the following description a capital V is reserved for a vertex of the
hypergraph, whereas a lower case 1’ denotes an ordinary vertex of the lattice.

The state ,F(P-j = s(i’ 1. v2) = (s(vl). s(vz)) - (* 1. 5 I), is a paEr of spins, and the
exchange of unlike spins causes a change of the state. This m.odel represents the
evolution of an alloy which consists of two atomic species id and B. Spin + S is
identified with species A and spin - 1 with species B. Spin exchange leaves the
number of each species unchanged.

The realization of Eq. (2.1) is the same as above, Le,, each vertex (pair of spins)
generates its own pseudo-random number r. uniformly distributed on (0, 14, and
increases its local time r by -(l/L) log r, where 2 is the chosen fixed rate of
attempted changes. Viewing Fig. 3.1 in terms of this example, each connection fine
has its own pseudo-random generator, not each circle as in the previous example.

State change is described by Eq. (2.2’). The simpler equation, j2.2j, cannot be
used. Indeed, the exchange of the pair of unlike spins S,, and ST3 in Fig. 3.1 would
change the state of vertex V= (Sz2, S23), as well as the state of any vertex
I’ E neighborsi V), e.g., the state of v’ = (S,, , ST1),

As was assumed in the general case, Section 2. no two close updates can have the
same simulated time. A consequence of violating this prohibition for the binary
ahoy example might be as folllows: Suppose, vertices V and Y’ are chosen as above,
and their current spin values are S,, = -1, S,:= +I, S,,= -I (this means that
siees S,, _ and S,, are occupied by two B atoms and site S?, is occupied by an A
atom). The update of s(V) would mean that the ,L9 atom moves to S23, whereas the
update of s(V’) would mean that the A atom moves to S,, . These two possibilities
conflict with each other.

112 BORIS D. LUBACHEVSKY

The probability p = P(- AEjkT) of change is derived from the same Hamiltonian
(3.1) where v and V’ are ordinary vertices in the lattice (not in the hypergraph),
following the same equations (3.3), (3.3), or (3.3’) and equation

AE(v, 1”) =
A(v) + ,4(v’)-4JS,,S,,r if S,, #S,.,

03 if S,, = S,., (3.5)

where /l(v) is the change of energy caused by the single spin flip s(v) --f -S(V); in
the square lattice case n(v) = n(i, j) is given by (3.4). If S,, =S,,, then the state
change equation (2.2’) degenerates to identity (nothing changes); the remaining
equation (2.1) means simply advancement of time.

4. SUPERSATTJRATION AND THE BKL ALGORITHM

Consider the effect of supersaturation in the example of single spin flip. A
fragment of a square lattice is represented in Fig. 4.la, wherein each PE carries an
m x 111 sublattice, F?I = 4.

The neighbors of a vertex carried by PEl are vertices carried by PE2, PE3, PE4,
or PE.5. PEl has direct connections with these four PEs (Fig. 4.lb). Given vertex v
in the sublattice of PEl, one can determine with which neighboring PEs com-
munication is required in order to learn the states of the neighboring vertices. Let
W(v) be the set of these PEs. Examples: W(A) is empty, W(B) = {PE5),
W(C) = (PE3, PE4).

PEI simulates the evolution of its sublattice as a sequence of one spin updates. At
each update PEl does the following:

1. Selects vertex v uniformly at random in the sublattice.

0

63
PE5

0

0
-

PE2

(0 0 0 01

L

OPEl O O O
I----------

63;o @/O

0 k--d O

0 0 0 0

PE3

PE2

cl-8-0 PE5 PEI PE3

6 PE4

I 0 0 0 0
PE4

FIG. 4.1.

b)

Supersaturation.

DYNAMIC ISING SPIN SYSTEMS 113

? I . Waits until its local time becomes not larger than the local times of all the
PES in if-(Y).

3. As in the standard algorithm. determines the probability p of the spin flip
using spins of the neighbors of V, Then S(V) changes to --s(s) with probabihty p or
remains unchanged with probability 1 - p.

4. Increases its local time by -log r/(nzzJ), where F is a random number
uniformly distributed on (0, 13, IX is the number of vertices in the subiattice, and j.
is the attempted change rate for a vertex.

The algorithm is asynchronous. The synchronization is not needed for the same
reason as in the algorithm in Fig. 2.2, namely, possibility (2.3) can be ignored.

At a given physical instance of simulation, ail the vertices carried by a PE have
the same local time, but different PEs may have different local times. The algorirhm
correctly simulates the history of updates, despite differences of local times at dif-
ferent s&lattices. The following example may serve as an informal proof of this
statement. Suppose PE1 is currently updating the state of vertex B (Fig. 4.1 t and its
local time is t,. Since IV(B) = [PE5). this update is possible because the focal time
of PE5, tj, is currentlv larger than t,. At present, PEI receives the state of D kom d
PE5 in order to perform the update. This state is in time tj, i.e., in the future wirh
respect to local time f,. Howerrer. the update is correct, since the state of D was the
same at time f,) as it is at time rj.

Indeed, suppose the state of D were to be changed at simulated local time ~~~
ri < t, < lj. At the moment when this change would be processed by PES, the local
time of PEI would be larger than t,, and t, would be the focal time of PE5. After
this processing has supposedly taken place. the local time of PE1 should not
decrease. Yet nn the present it is t,, which is smaller that I,. This contradiction
proves that the state of D cannot in fact change in the interval (tr. tj)=

The ~~~it~~~a~ efficiency of the supersaturated algorithms as compared with their
sacurated counterparts can be explained in the example of single spin flip, square
lattice, as follows: In applying the saturated algorithms (Fig. 2.1 and Fig. 2.2) a PE
may wait for its four neighbors. However, in the supersaturated algorithm, the PE
waits for at most two neighbors. For example, when state of C in Fig. 4.1 is
updated, PEI might wait for PE3 and PE4. Moreover, in at least (m - 2)’ cases out
of f?z’, PEI does not wait at all, because f%‘(v) is empty.

This additional efficiency becomes especially great ifs instead of set neighbcrsrl:)
in the original formulation of the model, one uses sets

neighbors’(r) ef next-to-nearest-neighbors(v)

or. more generally, qth degree neighborhood, neighborsg(,v). The latter is defined for
q > 1 inductively,

neighborsY(r) Ef neighbors(neighbors”- ‘(v)).

114 BORIS D. LUBACHEVSKY

where neighbors(S) for a set S of vertices is defined as neighbors(S) =
u ,, E s neighbors(v).

It is easy to rewrite the saturated algorithms for the case q > 1. The obtained
codes have low efficiency, however. For example, in the single spin flip, square lat-
tice case, one has IneighborsY(\?)I - 1 = 2q(q + 1). Thus, if q = 2, a vertex might have
to wait for 12 vertices in order to update its spin. In the same example, if one PE
carries an nz x 112 sublattice, and m > q, then PE waits for at most three other PEs
no matter how large the q is. Moreover, if r?l> 2q then in (m - 2q)’ cases out of m2
the PE does not wait at all. Further performance improvement is obtained by
incorporating the BKL algorithm.

The BKL algorithm splits all the vertices into a finite number of pairwise disjoint
classes C,, C,, CLj. The rates 2~~ of changes (not just the attempts to change) for
all the 1’ E C, are the same. Here pk is the probability that an attempted change
succeeds for a vertex in class C,. In the example of single spin flip, square lattice,
one has d= 10, because only 10 different values of 3E(i, j) in (3.4) hence 10
different values of pk are possible. These different dE(i, j) are obtained when the
five participating spins independently take on values + 1. At each iteration the BKL
does the following:

(i) Selects CkO at random according to the weights JCkl pk, k= 1, 2, . ..) d,
and selects a vertex in C,, uniformly at random.

(ii) Changes the state of the selected vertex.
(iii) Increases the time by -log r/(1(2, ck<dJCkj pk)), where r is a random

- ’ number uniformly distributed on (0, 11.
(iv) Updates the membership of the classes.

An obvious idea is to apply a copy of the BKL algorithm to each sublattice
carried by a PE. Such a procedure, however, causes roll-backs, as seen in the
following example: Suppose PEl were currently updating the state of vertex B
(Fig.4.la) and its local time were t,, while the local time of PE5, t,, was larger
than t,. Since D is a nearest neighbor to B, D’s membership might change because
of B’s changed state. Suppose D’s membership were to indeed change. Although this
change would have been in effect since time t,, PE5, which is responsible for D,
would learn about the change only at time t5> t,. As the past of PE5 is not
therefore, what PE5 has believed it to be, interval [tl, t,] must have been
simulated by PE5 incorrectly and must be played again. This original roll-back
might cause a cascade of secondary roll-backs, thirs generation roll-backs, etc.

A modified BKL algorithm applies the original BKL procedure only to a subset
of the vertices, whereas the procedure of the standard model is applied to the
remaining vertices. More specifically: an additional separate class C, is defined.
Co, unlike other C,, k> 0, always contains the same vertices. Steps (i)-(iv) are
performed as above with the following modifications:

(1 j The weight of C, in step (i) is taken to be IC,I.

(2) If the selected v belongs to Co- then in step (ii) the state of 1’ may or may
cot change. The probability p of change is determined as in the standard model,

(3 j The time in step (iii) should be increased by -log Y,/(JL(Co -I-
x1 Gk ctJ ICA-J pr-‘jf, where r is a random number uniformly distributed on (0, 11.

Now consider again the sublattice carried by PEl in Fig. 4,Ia. The sublattice can
be subdivided into the (UT - 2) x (nz - 2) “kernel” square K and the remaining boun-
dary layer E. If first degree neighborhood. neighbors(v)? is replaced with the qth
degree neighborhood, neighborsq(\tj, then the kernel is the central (nr - 2qj j:
(W - .Q) square. and the boundary layer has width 4. In Fig. 2.la, the dashed square
separates K from L. To apply the modified BKL procedure to the sublattice carried
by PEl. the boundary layer L is declared to be the speciai fixed class C,. Similar
identification is done in the other sublattices, As a result, the fast concurrent
procedures on the kernels are shielded from each other by slower procedures on the
layers.

The roll-back is avoided, since state change of a vertex in a sublattice does not
constitute state or membership change of a vertex in another sublattice. L?niess the
performance of PEI is taken into account, the neighbors of PE1 cannot tell which
algorithm PEi uses to update its kernel, the standard of the BKL, As the size of abe
sublattice increases, both the relative weight of the kernel and the fraction of the
fast BKL processing do.

Thus far only the example of a square lattice has been discussed. The same
method is valid for a general geometry of the lattice, in particular for the spin
exchange (binary alloy j example. Observe, that in the Latter case, the boundaries
between sublattices are “cutting” the circles where the spms reside not the connec-
tion fines between the spins.

5. COLLECTING STATISTICS

Given function j’(X) defined on a spin configuration X, one must compute the
time averages of the form

The complexity burden in computing .f usually resides in a commutative an
associative operation such as summation, minimization, or maximization performed
with local quantities over the entire lattice. For such an f3 a local change in the
Mice causes a simple update 0f.f: An algorithm, which sequentially generates local
changes to X, updates f(X) and (5.1) after each change, spending only a bounded
amount of extra computing per update.

For a small or moderate number N of PEs involved in the parallel simulation,
the same conventional method can be used. However, as the N increases, the serial

116 BORIS D. LUBACHEVSKY

update method eventually becomes a bottleneck. The problem may be visualized in
the following example. Imagine a parallel computer simulating an evolution of X(f j.
As the computer works, the value of expression (5.1), of for that matter, just
f(X(t)), is being charted on a paper roll. If one wishes each change in X(t j to be
distinguishable on this chart, the drawing pencil must jump at the rate of about N
times the rate of the changes in an individual PE, because local changes occur at
different simulated times. In other words, the speed of the pencil must match the
cumulative speed of the parallel computer.

This example demonstrates that exact, on line with the parallel processing,
calculation of (5.1) is impossible for a large N. A solution might be to scan X(t) at
regular time intervals dr and to replace calculation of (5.1) with computing the
following quantity

(5.2)

Note that the approximate evaluation of (5.1) in the form (5.2) is usually performed
anyway, where At is chosen so that the correlation E{f(X(r))f(z + At))] is small.

The corresponding modification to the asynchronous algorithm is presented in
Fig. 5.1. In addition to simulating the history of vertex v, in this algorithm, the PE
reports S(Y) = s,(v) at local times t = rzO dt, (~2~ + 1 j At, (no + 2) At, Variables
ne~-t and 11 are private; At and Q are constants, whose values are the same for all
the PEs. Statement “report s(\!!)” in line 5 implies a protocol of communication with
the collecting statistics network (CSN).

Consider the example presented in Fig. 5. 2. Here the computer configuration
matches a circular graph G with 8 vertices I’~, i= 1, 8. Let At be 1, and denote S,
the value of state s,(). FIFO buffers are provided at the entrances to the CSN to
“align” local times of different PEs. Since the buffer sizes are finite (four slots in
Fig. 5.2), busy-waits might be involved in the execution of statement “report s(v)”
(line 5, Fig. 5.1). In the snapshot of the buffers shown in Fig. 5.2, PE3 has already
progressed beyond the time mark I = 11. There is no more slot in the entrance

/* Initially new I = f b), n = no. t(v) < noAt */ -
cycle I

I. wait-until f(v) C min
v’ E neighbors(v)

t(v3 ;

2. s(v) - next-state (s (neighbors (v)), I (v)) ;

3. new-t - time-of-next-attempt (v, t (v)) ;

4. while new-t > nAt {
5. report s (v) ;

6. n-n+1

I;
I. t(v) - new-t

FIG. 5.1. Collecting statistics in the asynchronous algorithm.

DYNAMIC ISING SPIN SYSTEMS Ii?

r----------‘--~
/ COLLECTING STATISTICS NETWORK

EVENT PROCESSING NETWORK

FIG. 5.2. The parallel for Ising simulation

buffer corresponding to this PE and if PE 3 is ready to report its Siz, it might be
delayed.

Finite buffers introduce a restriction which is not present in the original
algorithm in Fig. 2.2 According to this restriction the lag between concurrently
processed local times cannot exceed a certain constant. The exact value of the con-
stant in each particular instance depends on the relative positions of the update
times within the Jr-slots. In any case, the constant is not smaller than dr x buffer
size and not larger than dt + d t x buffer size.

However. even without a buffer, the simulation does not become time-driven. In
this sase, the concurrently processed local times might be within a distance of up to
At from each other, whereas il t might be relatively large. No precision of update
time representation is lost, although effkiency might degrade when both dr and the
buffer size become too small? see Section 6.

The major part of the computation off(X(t)) is distributed among the nodes of
the CSN. For example, let f(X) mean the average value of s(v) over all 11 in the
lattice. Then the major part of computation is the summation of S, over the lattice.
While computing this sum, each node of the CSN adds the values received from the
nodes below and sends the result to the node above until the overall sum appears at.
the exit of the topmost node. Then this sum can be further processed using
conventional methods.

The CSN is not necessarily a binary network. The number of input connections
can be higher than two to balance internal computations and communications. In

118 BORIS D. LUBACHEVSKY

the event processing network shown in Fig. 5.2, one PE does not necessarily carry
only one vertex; thus, supersaturation is possible. If a PE carries many vertices, it
might as well precompute the quantity of interest over its sublattice. Then it would
report this quantity instead of the state of its sublattice to the CSN. Various other
modifications are also feasible.

6. PERFORMANCE

Modeling and analysis of asynchronous algorithms is a difficult theoretical
problem. Strictly speaking, the following analysis is applicable only to synchronous
algorithms. However, one may argue informally that the performance of an
asynchronous algorithm is not worse than that of its synchronous counterpart,
since expensive synchronizations are eliminated.

First, consider the synchronous saturated saturated algorithm in Fig. 2.1. Let N
be the size of the lattice and N,, be the number of vertices which passed the test in
line 1, Fig. 2.1. The ratio of useful work performed, to the total work expanded at
the iteration is No/N. This ratio yields the efficiency (or utilization) at the given
iteration. Assuming that in the serial algorithm all the work is useful and that the
algorithm performs the same computation as its parallel counterpart, the speedup
of the parallel computation is the average efficiency times the number of PEs
involved. Here the averaging is done over all the iterations with equal weights.

Whether the test succeeds or not can be determined knowing only the times at
each iteration; the configuration is irrelevant. This leads to the simplified perfor-
mance model in which only local times are taken into account: at an iteration, the
local time of a vertex is incremented if the time does not exceed the minimum of the
local times of its neighbors. The increment is a random sample from a mean-one
exponential distribution.

Table II represents the efficiency for the experiments in which G is a circle with y2
vertices. In these and other experiments reported below, 9 independent runs with
different-seed random sequences were made for each table entry. During each run
10,000 iterations were simulated. (The number of spin change attempts at each
vertex was about 10,000 times the efficiency.) The 9 efficiencies obtained were
processed using Student’s criterion with confidence at 99.99%. The average
efficiency obtained and the computed interval limits are shown in each table entry.

TABLE 11

Efficiency for a Circle of Size n-A PE Carries One Vertex

n 3 6 12 21 48 96 192 384 768

Efficiency 0.3334 0.2851 0.2657 0.2566 0.2512 0.2487 0.2478 0.2473 0.2474
_+O.O~l +0.0030 &0.0014 +0.0020 *0.0023 i.o.0022 +om33 ~0.0021 1-0.0012

DYNAMIC ISING SPIN SYSTZMS i 1'3

It is seen that efficiency slowly decreases, starting with value f for a three-vertex
cycle until it reaches the value slightly below 0.25 for the circle of size n, = 384. The
further change for PI > n, appears beyond the resolution of these experiments

Both saturated and supersaturated algorithms were tested for an II x n lattice. For
the supersuturated algorithm the performance model is as follows:

At an iteration, with probability pO = (nz - 2)2/n~‘, the local time of PE gets a
random exponentially distributed increment. Here m x m is the size of the sublattice

by a PE and pp is the probability that the PE wlfl choose a vertex v in the
kernel, so that / W(v)l = 0.

With probability $I = 4(rn - .2)/n?, the PE mus t check the time of one of its
four neighbors before making Ihe update. The neighbor is chosen uniformly at rr?n-
dom. Yf the time of the neighbor is not smaller than the time of the PE, then the
Lime of this PE gets an increment, Here p, is the probability that PE will choose a
vertex v in an edge but not in a corner, so that ! FV(v)l = 1.

With the remaining probability p?. =4/In’, the PE checks the time of two if i:s
adjacent neighbors (for example, in Fig. 4.1, PEl could check the times of PE3 and
PE4). The two neighbors are chosen uniformly at random from the rour
possibilities. Again, if the time of the PE is not larger than the time of each of the
tested neighbor, then the time of the PE gets an increment. Here p2 Is the
probability to choose a vertex 1’ in a corner, so that j CV(v)(= 2.

TABLE III

Efkiency for an II x n Lattice -.4 PE Carries an m x m S&lattice
-

,I
3 6 12 24 48 96 192 384 768

1,)

I 0.1762. 0.1404 0.1276 0.1233 0.1215 0.1208
~0.0008 +0.0014 i.O.0011 kO.0009 kO.0006 ~0.0006

3 1 0.3897 0.3043 0.2744 0.2629 0.379 0.2566
io.0037 *0.0025 *0.0023 iO.0026 ,O.OOll &0.0012

6 ~ 0.5197 0.4282 0.3959 0.3829 0.37'74 0.3759
+0.0085 +0.0049 kO.0052 kO.0039 &O.GO??. +0.0017

12 - 1 0.6375 0.5538 0.5190 0.5087 0.5038 0 5013
kO.0080 iO.0034 iO.0012 CO.0039 +0.0030 iC.0025

24 - 1 0.7346 0.6609 0.6344 0.6240 0.6197
+0.0089 kO.0078 &0.0047 to.0056 +0.X%8

43 - - - 1 0.8073 is.7097 0.7283 0.7199
iO.0106 &0.0072 +0.0085 ?O.OQ43

96 - - 0.8624 0.8207 6.8620
kO.0123 +O.OO46 1:O.Q082

120 BORIS D. LUBACHEVSKY

The results presented in Table III show that the supersaturated algorithm
improved performance significantly when compared with its saturated counterpart.
For example, the efficiency for a 768 x 768 lattice (about 0.6 million spins), when
one PE carries a 48 x 48 sublattice (about 2 thousand spins) is larger than 71%.
This means a speedup of more than 180 usin 256 PEs. The number of spin change
attempts at each vertex is about 10,000 times the efficiency divided by the number
of spins in a sublattice. In this particular experiment each vertex attempted to
update its spin about three times. Blank entries in this and the following tables are
for experiments which were too long to complete. (A serial computer was used to
perform these experiments.)

Table IV presents the efficiencies for cubic Ising lattices. The model for the super-
saturated algorithm is similar to that of the square lattices. It involves four
probabilities:

p0 = (nz -2)3/m3, the probability vertex 1’ is chosen in the kernel; 1 W(v)/ = 0;
p, = 6(m - 2)‘/m3, the probability vertex 1’ is chosen in a face but not in an

edge; / W(v)/ = 1;
pz = 12(nz - 2)/m3, the probability vertex r is chosen in an edge but not in a

corner; 1 W(v) / = 2;
p3 = 8/nz3, the remaining probability: vertex v is in a corner; 1 W(r)/ = 3.

Results taken from all three tables clearly indicate that performance degrades
when the degree of the lattice increases. However, even in the 3D case, super-
saturation makes the algorithm attractive: efliciency is larger than 50% for a

TABLE IV

Efficiency for an n x n x n Lattice-A PE Carries an m x m x m Sublattice

n
3 6 12 24 48 96 192

112

1 0.1077 0.0845
*0.0015 ~0.0011

3 1 0.2745
* 0.0030

6 1

12

24

0.0783 0.0763
* 0.0003 * 0.0004

0.2036 0.1840
+_0.0034 +_0.0018

0.3949 0.3103
_+ 0.0049 f 0.0040

1 0.5191
i 0.0058

- 1

0.1779
+_0.0007

0.2868
&0.0016

0.4352
+ 0.0046

0.6313
*0.0112

1

0.2790
*0.0017

0.4093 0.4011
& 0.0032 ~0.0016

0.5583 0.5341
+ 0.0074 k 0.0028

0.7277 0.6644
*0.0104 f 0.0062

48

DYNAMIC ISING SPIN SYSTEMS !2H

TABLE V

Efficiency Degradation Caused by Bounded Lag

Efficient!, 0.5038 0.503 1 0.4987 0 4643 5.4m @ 3136
* 0.0030 +o.oozs *0.0012 :k 0.0035 +0.0035 +0.0623

Lag 1 0.8 0.6 0.5 0.4 0.3

Efficienq 0.2255 O.?OOO 0.1699 0.1526 0.1334 0.1111
-i: 0.001 I +0.0010 +0.0012 + o.iiOQ9 + 0.0005 2 0.0006

192 x I92 x 192 lattice (about 7 millions spins) when one PE carries a 24 x 24 x 24
sublattice (about 14 thousand spins). This means a speedup of more than 250 using
5 12 PES.

In the experiments reported above, the lag between local times of any two PEs
was not restricted. To see how the lag restriction affects the efficiency, 0rie
experiment reported in Table III was repeated with various finite values of the lag.
In this experiment, an II XIZ lattice is simulated and one PE carries an 171 x trr
sublattice, where n = 384 and t?? = 12. The results are presented in Table V.

In Table V. the unit of measure for a lag is the expectation of time intervals
between attempted changes. For lags > 16, degradation of -efficiency is almost
unnoticeable, when compared with the base experiment where lag = + 3~. Substan-
tial degradation starts at about lag = 8; for lag = 1, the efficiency is about ha
that in the base experiment. However, even for lag=O.3, the simulation remains
practical, with an efficiency about 0.1. Since 1024 PEs execute the task, this
efficiency means speedup of more than 100.

7. CONCLUSION

This paper demonstrates an efficient parallel method for simulating continuous
time Ising spin systems. The algorithms are quite simple and easily implementable
on appropriate hardware. In particular, the synchronous saturated algorithm
(Fig. 2.1) can be implemented on a vector processor or any other synchronous
SIMD machine, if a good parallel random number generator is available. In such
an implementation the algorithm becomes useful when the number of processing
eiements is sufficiently large. Each algorithm presented in the paper can be
implemented on a general purpose asynchronous parallel computer, e.g., on the
currently available bus machines with shared memory. The speed of such an
implementation would depend on how fast the PEs are and how efficient the
communication system is.

Work is currently underway to implement the synchronous saturated algorithm

122 BORISD.LUBACHEVSKY

(Fig. 2.1) on the Connection Machine” [7] and to implement asynchronous
supersaturated algorithms (Section 4) on the Balance computer. A detailed account
of these implementations will be reported elsewhere. The preliminary results are
quite satisfactory and agree with the theory.

A challenging mathematical problem is proving that efficiency tends to a positive
limit when the numbl;r of FEs increases to infinity.

ACKNOWLEDGMENTS

I thank Andrew T. Ogielski and Malvin H. Kales for stimulating discussions, Debasis Mitra for a
helpful explanation of a topic in Markov chains, and Brigid Moynahan for carefully reading the text.

REFERENCES

1. C. BERGE, Graphs and t<vppergraphs (Elsevier, New York, 1976).
2. K. BINDER (ed.) Afonfe Carlo Merhods in Sfarisricai Physics (Springer, New York, 1986).
3. A. B. BORTZ, M. H. K.&LOS, AND J. T. LEBO~ITZ, .I. Corn@. Phys. 17. 10 (1975).
3. M. CREIJTZ, clnn. P/~w. (N.Y.) 167, 62 (1986).
5. R. FRIEDBERG, AND J. E. CAMERON, J. Chern. Phys. 52. 6049 (1970 J.
6. R. J. GLAUBER, J. Math. Phyy. 4, 294 (1963).
7. W. D. HILLIS. The Connection Machine (MIT Press, Cambridge, MA, 1985).
8. F. ISING. Z. Phys. 31, 253 (1925).
9. J. KEILSON, Markov Chain Models-Rarity mid Exponentialir~~ (Springer, New York, 1979).

10. C. P. KRUSKAL, Ph.D. thesis, Courant Institute, New York University, 1981 (unpublished).
11. B. D. LUHACHEVSKY, AT&T Bell Laboratories technical memorandum, May 22, 1986

(unpublished).
12. N. METROPOLIS, A. W. ROSE:NBLUTH. M. N. ROSENBLUTH, A. H. TELLER, AND E. TELLER, J. Chem.

Phys. 21, 1087 (1953).
13. A. T. OC;IELSKI. Phys. Rev. B 32, 7384 (1985).
14. S. M. Ross, Inrroduction to Probabiliiy Models 3rd ed. (Academic Press, New York, 1985).

’ Connection Machine is a registered trademark of Thinking Machines Corporation.
5 Balance is a trademark of Sequent Computer Systems, Inc.

